博客
关于我
最近邻插值算法的c++实现(QT框架)
阅读量:765 次
发布时间:2019-03-24

本文共 470 字,大约阅读时间需要 1 分钟。

最近邻插值(KNN)是一种常用的图像处理算法,用于在已知像素点的基础上填充输出图像。这套算法通过像素复制和像素抽样技术,让原本不够大的图像能够在放大或缩小几倍后依然保持良好的图像质量。

假设原图的宽度为 W,高度为 H,而缩放后的图像宽度为 w,高度为 h,那么宽度和高度的缩放比例分别是:

  • 宽度缩放比例:w/W
  • 高度缩放比例:h/H

在实际操作中,KNN算法通过以下步骤来实现图像的高效缩放:

  • 初始化缩放比例:根据目标图像的宽度和高度计算相对于原图的缩放比例。
  • 逐行处理:从目标图像的第一行开始,逐行处理原始图像对应的像素点。
  • 确定对应像素点:通过对当前目标行进行竖直方向的缩放比例计算,找到原始图像中对应的像素行。
  • 逐列复制:根据水平方向的缩放比例,将原始图像对应的像素点逐列复制到目标图像中。
  • 这种方法的核心在于通过简单的算术运算和内存复制操作,实现了对图像按像素水平进行的原始比例保留,从而显著提升了图像缩放时的质量和效率。

    通过以上方法实现的图像缩放既能有效解决图像尺寸调整问题,又能在一定程度上保护图像细节,使其更加清晰和逼真。

    转载地址:http://ebjkk.baihongyu.com/

    你可能感兴趣的文章
    NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
    查看>>
    NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
    查看>>
    NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
    查看>>
    NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_01---大数据之Nifi工作笔记0033
    查看>>
    NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
    查看>>
    NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
    查看>>
    NIFI大数据进阶_离线同步MySql数据到HDFS_说明操作步骤---大数据之Nifi工作笔记0028
    查看>>
    NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
    查看>>
    NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
    查看>>
    NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
    查看>>
    NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南002---大数据之Nifi工作笔记0069
    查看>>
    NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
    查看>>
    NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
    查看>>
    NIH发布包含10600张CT图像数据库 为AI算法测试铺路
    查看>>
    Nim教程【十二】
    查看>>
    Nim游戏
    查看>>
    NIO ByteBuffer实现原理
    查看>>
    Nio ByteBuffer组件读写指针切换原理与常用方法
    查看>>
    NIO Selector实现原理
    查看>>
    nio 中channel和buffer的基本使用
    查看>>